

()

· · · · »

« »

- 2 -621.002

. .

» / - , 2011. – 78 .

- , 2011. - /8 .

.

.

151001 « ».

12 26.09.11.

: « ,,

© , 2011

1	,		
2			
3			
	3.1 3.1.1		
	3.1.2		
	3.1.3		
	3.1.4		
	3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 3.1.10 3.2 3.2.1	,	
	3.2.2		
	3.2.3 3.2.4 3.2.5 3.2.6 3.2.7		
	3.2.8		,
	3.2.9 3.2.10		
	3.2.11 3.2.12 3.2.13 3.2.14 3.2.15		

3.2.16

3.3 3.3.1

3.3.2

3.3.3

4

4.1 4.2

4.2.1 4.2.2 4.2.3 4.2.4

4.2.5 4.2.6 4.2.7

4.2.8

4.3 4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.5

1

1.5 1.6 1.7

() (1 - 0,5-1 1) 2) 3) 4) -0,5-1 - 1-2 ; • - 1 -1 1.1 1.2 : 1.3 1.4

1.8 1.9 1.10 2 2.1 2.2 2.32.42.5 2.6 2.7 2.8 2.9 2.10 2.11 2.122.13 2.14 2.15 2.16 3 3.1 3.2 3.3 (1.1).

, , ,

(, ,) –

().

1.1 –

/			, %
1	·	1	-
2		2	3
3		3	8
4		4	8
5		5	6
6		6	5
7	,	7	3
8		8	8
9		9	7
10	,	10	8
11		11	8
12		12	9
13		13	8
14	·	14	9
15		15	10
16		16-17	-

2

8...10

· , -

30 .

· · 3

3.1

3.1.1

, / ., $\tau = 60F_{\ddot{a}}/N_{\tilde{n}\acute{a}},$ (1) F – N_c – $F = F_H k,$ (2) F-k-0,98, 0,97 0,96

 $F_H = Dzn$ (3) Dz *n* –

 $F_H = [(365 - O - -) \cdot 8 + \cdot 7] \cdot ,$ (4) 365 – = 10.

(5)

 $= \tau / \qquad ,$ $= \sum_{i=1}^{n} T \quad _{.i} / n ,$ (6)

n –

- 10 -

2 < 10; , 10 < 20; , 20 < 40, , 40.

,

3.1 –

		, .
		,
30	8 - 30	8
5	10	100
5 - 100	10 - 200	100 - 500
100 - 300	200 - 500	500 - 5000
300 - 1000	500 - 5000	5000 - 50000
1000	5000	50000

3.1.2

,

, : «

».

,

[1, 2].

,

,

, «... 15

17...».

3.1.3 (), (). 3, 7, 10, : « 15 12 **»**. 14. **« - 15** 23652 - 79300 ». **«** 23652 - 79 - 15 300±

: « 8. 117,6 ...147 **»**. : « 117,6...147 $V\pm$ / **»**. : « 5. Ø19^{+0,045} .14 .10 : « $\emptyset 19^{+0,045}$ **»**. 11. .11 : « . 39 **»**. **»**. **«** .11 . 39 : « **»**. () 1. : $=0^{+0.56}$ **«** . 27 . 35

».

```
2.
                                                              (
                                                                                                                   ),
  3.
  4.
                                                              _{\Delta}=\sum_{i=1}^{m-1}\xi_{A_{i}}A_{i}\;,
                                                                                                                                                                           (7)
i = 1, 2, ..., m -
                                                                                                                                                               );
   \xi_{A_i} –
  \xi_{A_i} = 1
  \xi_{A_i} = -1
  A_i –
                                                                                                       T_{A_{\Delta}} , ,
  5.
                                                        T_{A_{\Delta}} = \Delta _{\Delta} - \Delta _{\Delta},
                                                                                                                                                                            (8)
\Delta_{\hat{a}_{\dot{A}_{\Delta}}} , \Delta_{i_{\dot{A}_{\Delta}}} -
                                                        \Delta_{\Delta} = (\Delta_{\Delta} + \Delta_{\Delta})/2.
                                                                                                                                                                            (9)
  7.

\dot{O}_{\tilde{n}\tilde{o}} = \frac{\dot{O}_{\dot{A}\Delta}}{\left|\xi_i\right| * (m-1)}.

                                                                                                                                                                         (10)
                                                                                                                                                         0,05
                           -0,03
                                                       1-7
  8.
  9.
             )
```

1. $T_i \\ \grave{O}_i = \Delta_{\hat{a}_i} - \Delta_{f_i} , \\ \Delta_{\hat{a}_i}, \Delta_{f_i} - \\ i -$

.

 $\Delta_{\hat{\imath}_i}$

 $\Delta_{o_i} = (\Delta_{\hat{a}_i} + \Delta_{i_i})/2.$ (12)
3.

 $T_{\Delta}' = \sum_{i=1}^{m-1} |\xi_i| T_i , \qquad (13)$

 T_i () (. .1).

 $T_{A_{\Delta}}' \le T_{A_{\Delta}} \,. \tag{14}$

(14)

(14) ,

5. Δ'_{O_Δ} :

 $\Delta_{o_{\Delta}}^{/} = \sum_{i=1}^{m-1} \xi_{i} \Delta_{o_{i}} . \tag{15}$

 ${\Delta^{\prime}}_{O_{\!\scriptscriptstyle \Delta}}$ $\Delta_{O_{\!\scriptscriptstyle \Delta}}$, Δ_k $\Delta = \pm (\Delta'_{\Delta} - \Delta_{\Delta}) .$ (16) **«** T_{i} 1. (11). 2. (12). T_{Δ}^{\prime} , (3. $T_{\Delta}^{/}=t_{\Delta}\sqrt{\sum_{i=1}^{m-1}\xi_{i}^{2}\lambda_{i}^{2}\left(T_{i}^{\prime}\right)}$ (17) t_{Δ} (t) t_{Δ} , 3.2. **3.2** –

, %	32	23	16	9	4,6	2,1	1	0,51	0,27	0,1
t _A	1,0	1,2	1,4	1,7	2,0	2,3	2,57	2,8	3	3,3

, t = 3. λ_i^2

.

,

 $\lambda_i^2 = \frac{1}{9}$. $\lambda_i^2 = 1/6.$ $\lambda_i^2 = 1/3.$

4.

(14).

 T_i 1. (11).

2.

(12).

3.

(13). 4.

 $n = T_{\Delta}^{/} / T_{\Delta}$. (18)

5.

 $\dot{O}_{\tilde{n}\tilde{o}} = \frac{\dot{O}_{\Delta}}{m-1}$ (19)

 $\sum_{i=1}^{k} \left| \xi_i \right|_{T_i}^{\mathbf{r}} = \sum_{k=1}^{m-1} \left| \xi_i \right|_{T_i}^{\mathbf{S}},$ (20)

 T_i T_i T_i - k- m-

- 17 -

$$T_i = \frac{T_i'}{n},\tag{21}$$

(15).

$$\Delta_{o_{\Delta}} = \Delta_{o_1} - \Delta_{o_2}.$$

7.

1- :
$$\Delta_{\hat{I}_{2}} = (1/2\dot{O}_{\tilde{n}\tilde{o}} - \Delta_{\hat{I}_{\Delta}}); 2-$$
 : $\Delta_{\hat{I}_{2}} = (3/2\dot{O}_{\tilde{n}\tilde{o}} - \Delta_{\hat{I}_{\Delta}});$

$$\vdots \ \Delta_{\hat{I}_2} = (5/2\hat{O}_{\tilde{n}\tilde{o}} - \Delta_{\hat{I}_{\Delta}}) \quad . .$$

8.

$$\Delta_{\hat{a}_i} = \Delta_{o_i} + \frac{T_i}{2} \,, \tag{22}$$

$$\Delta_{H_i} = \Delta_{o_i} - \frac{T_i}{2} \,. \tag{23}$$

$$\Delta_{\hat{a}_{l}} = \left(\Delta_{O_{l}} + \frac{T_{i}}{2}\right) \quad ; \quad \Delta_{i_{1}} = \left(\Delta_{O_{l}} - \frac{T_{i}}{2}\right)$$

3.3.

3.3 –

/	1	Δ_{o_1}		2	Δ_{o_2}		Δ	Δ_{o_Δ}		
1	•••	•••	•••	• • •	•••	•••	• • •	•••		
2		•••	•••		•••	•••	•••			
3	•••	•••	•••	•••		•••	•••	•••		
	•••	•••	• • •	•••		•••	•••	•••		

1.

 T_i 2. (11).

 $\Delta_{\mathit{O}_{i}}$ 3. (12).

) T'_{Δ} , , (13). 4.

 $T_{\hat{e}}$ 5.

$$T_{\hat{e}} = \grave{O}_{\Delta}^{/} - \grave{O}_{\Delta} \,. \tag{24}$$

6.

 $\Delta_{\hat{e}}$ $\Delta = \frac{1}{2} + \sum_{i=1}^{m-1} \xi_i \Delta_{o_i} - \Delta_{o_{\Delta}},$ (25)

7.

c

$$\Delta_{O_i}^{\prime} = \Delta_{O_i} - \Delta_k , \qquad (26)$$

 Δ_{O_i} –

(22) (23).

()c

1.

(11). 2.

3.

() $T'_{A_{\Delta}}$, , (13). (12). 4.

 T_{k} 5.

(24). 6. N

> $N = \frac{T_{\rm V}'}{\Delta - T} \quad ,$ (27)

 $T_{\hat{e}\hat{\imath}\,\hat{\imath}\,\hat{\imath}}$ –

N 7.

 $\tilde{N} = \dot{O}_{\Delta} - \dot{O}_{\hat{e}\hat{i}\,\hat{i}\,\hat{i}} \ .$ (28)

 $\Delta_{o_{\Delta}}'$ 8.

 $\Delta o_{\Delta} = \sum_{i=1}^{m-1} \xi_i \Delta o_i,$ (29)

 $\Delta_{\hat{I}_i}$ –

9.

$$\Delta_{o_{\hat{e}}}' = \pm \left(\frac{T_{\hat{e}}}{2} - \Delta_{o_{\Delta}}' + \Delta_{o_{\Delta}}\right),\tag{30}$$

$$O_{\hat{e}}$$
 - ;

$$\Delta'_{o_{\Delta}}$$
 - ;

$$\Delta_{\hat{I}_{\Delta}}$$
 –

10.

$$(\Delta'_{o_{\hat{e}}})^I = \Delta'_{O_{\Delta}} \pm \Delta'_{O_k} . \tag{31}$$

$$(\Delta'_{o_{\hat{e}}})^{II} = (\Delta'_{o_{\hat{e}}})^{I} + C;$$
 $(\Delta'_{o_{\hat{e}}})^{III} = (\Delta'_{o_{\hat{e}}})^{I} + 2C$...

11.

(22) (23).

(3.4).

3.4 –

				,
	,	$\Delta_{O_{A_K}}$	$\Delta_{_{_{A_{K}}}}$	$\Delta_{_{A_{K}}}$
1				
2			•••	
•••	•••	•••	•••	•••

 $\alpha_{\hat{e}_{\min}}^{\circ} \leq \alpha_{\hat{e}}^{\circ}$ (32)

 $lpha_{\hat{e}_{ ext{min}}}^{\circ}$ _

 $lpha_{\hat{e}}^{\circ}-$, (). $lpha_{\hat{e}_{\min}}^{\circ}$ $lpha_{\hat{e}}^{\circ}$

 $\alpha_{\hat{e}_{\min}}^{\circ} = 360^{\circ} / n_{\hat{i}\,\hat{o}\,\hat{a}}, \tag{33}$

 $\alpha_{\hat{e}}^{\circ} = 360^{\circ} \dot{O}_{\Delta} / \alpha D, \tag{34}$

 $n_{\hat{i} \hat{o} \hat{a}}$;

 $\grave{O}_{\!\scriptscriptstyle \Delta}$ - ;

 $\begin{array}{ccc} \overline{\alpha}_- & & & & ; \\ P_- & & & . & & \end{array}$

3.1.4

,

· , ,

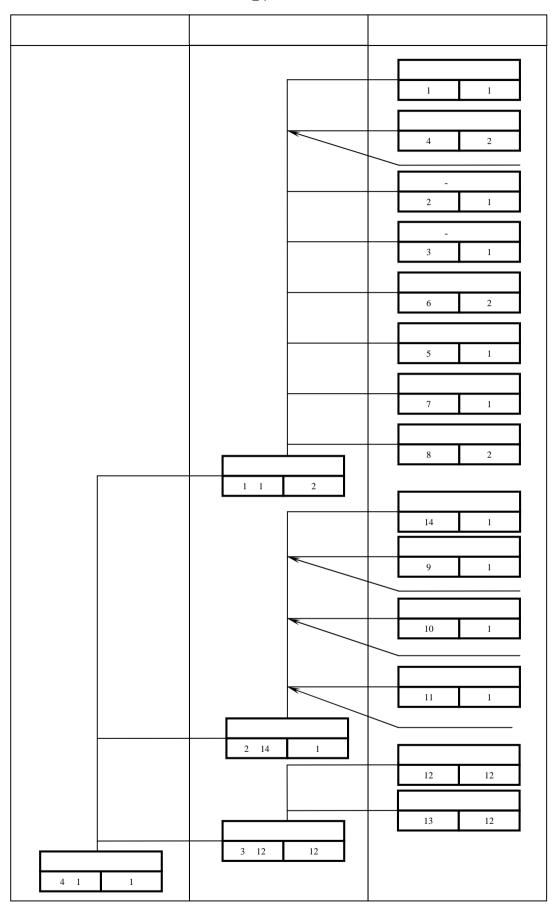
,

, « 7 8...».

.

,

,


, « Ø12 **»**. 3.1.5 , 1- , 2- , ..., n-

1. 2. · : , , , , , , , .

3.1.

.

,

3.1.6

. 13. . 15.

1 2 3.5.

3.5 –

-		-	- (), - (),	(),	,
1	2	3	4	5	6
005	01		:		0,066·4= 0,264
	4 02		:		0,1·4= 0,4
	03.		:		0,12·2= 0,24

2	_
٦	

			3.0
010	-		
		:	0,066.2 =
	01.		0,132
			0,051
	02.		,
	2		
	03.		0,051
	3		ŕ
	04.		0,047.2=
	. 6		0,094
	05.		0,088
	. 5		- ,
	06.		0,064
	. 7		3,00
	07.		0,082-2=
	. 8		0,164
	. 3		0,10.
	• • •	 	
025			

3.1.7

, (-) (-).

 ρ [3, . 300].

$$\rho = \frac{i \cdot 10^{-3}}{d \left(\frac{C_1}{E_1} + \frac{C_2}{E_2} \right)},$$

$$i - \qquad , \qquad ;$$
(36)

```
E_{I}, _{2} –
                                                     [4, .34].
                                    C_{1} = \frac{d^{2} + d_{1}^{2}}{d^{2} - d_{1}^{2}} - \mu_{1} \qquad C_{2} = \frac{d_{2}^{2} + d^{2}}{d_{2}^{2} - d^{2}} - \mu_{2} 
; \qquad ; \qquad ; \qquad ; \qquad ; \qquad ;
  d_I –
  d_{2} -
   \mu_1, \; \mu_2 -
                                                      [4, .34].
                                             d_1 = 0 C_1 = 1 - \mu.
                                                        i = \Delta d - 1,2 (Rz_1 + Rz_2),
                                                                                                                                                  (37)
Rz_1, Rz_2 –
                                     k = 1,5...2; : = k .
                                                                                                                                                  (38)
                                                                                                                                                      [5]
                                                                            T_{H}
                                            T_{H} > \frac{\Delta d_{\dot{O}} \cdot 10^{-3}}{\alpha \cdot d},
                                                                                                                                                (39)
d –
\Delta d_{\dot{O}} –
                                                                                                                        d
                                                                                   [3, .301];
                                                       \Delta d_{\dot{o}} = \delta + i,
                                                                                                                                                    (40)
                                                                                                                                               T, ^{\circ} ,
```

,

```
(41)
                                                       , °; T = 20°C;
         T-
           = 2,7172; -
                     k
                                      ).
                                k = \frac{33,3\alpha_1}{C \rho} \left( \frac{1}{h} + \frac{1}{l} \right),
                                                                                                  (42)
    h l-
    \alpha_1 - /( ^2 \cdot ^\circ \cdot );
                                                             [3, .301];
, /( ·° );
                    [6, .149];
                                                  , / {}^{3}; \\ m, ,
                                        m = \frac{m \Delta t_1}{C \Delta t_2},
                                                                                                    (43)
     m –
                                                           , /( ⋅° );
              /( ·° ) [6, .143];
    = 0.48
       t_2 –
                                        t_I = / - /,
                                        t_2 = / - /,
                                                                                                    (45)
-196° [6, .143];
                                     P = d^{1,75} \quad ^{1,75},
                                                                                                   (46)
                                                                                             3.6);
    K_{\phi} –
                                                                                (
     d –
```

3.6 –

28,6
26,2
15,2
4,33
4,33

(47) 3.7);

3.7 – K

45	57
55	78

S – D, d – D₁ –

3.1.8

30

[5, 7]: [5, c. 340...344]; [5, .344...348]; [5, .344...348]; [5, . 322...332]; [5, .462...477; 7, .532...579]. 3.6. 3.1.9 [8]. $= \sum \left[1 + (\alpha + \alpha)/100\right]_{2};$ (48) $= \sum \left[1 + (\alpha_{+} + \alpha_{-} + \alpha_{-})/100\right]_{1-2},$ (49)

-[8];

lpha – , ; [8, 1];

lpha – , [8, 4];

; [8, 5];

, [8, 6]; [8, 7]. 3.5. τ , 3.1.10 = $/\tau$. (50) η $\eta = (/) \cdot 100 \%.$ (51) 0,9...0,95. ${\acute I}_{\hat a\check o.\hat \imath\,\acute a}\,, \qquad ,$ $\hat{I}_{\hat{a}\hat{\delta}.\hat{i}\,\hat{a}} = \sum_{i=1}^{m} H_{\hat{a}\hat{\delta}_{i}},$ (52) $H_{\hat{a}\check{o}_i}$ – $i-\acute{e}$ m_{-} **3.2** 3.2.1

au , , , , au = 60F / N , (53)F - N -F = F, (54)

$$F -$$
 , ; (3); - 0,98, 0,97 0,96

,

$$_{\cdot} = \tau / \qquad , \tag{55}$$

$$T = \sum_{1}^{n} i_{-} \tag{56}$$

n- .

3.8.

3.8 –

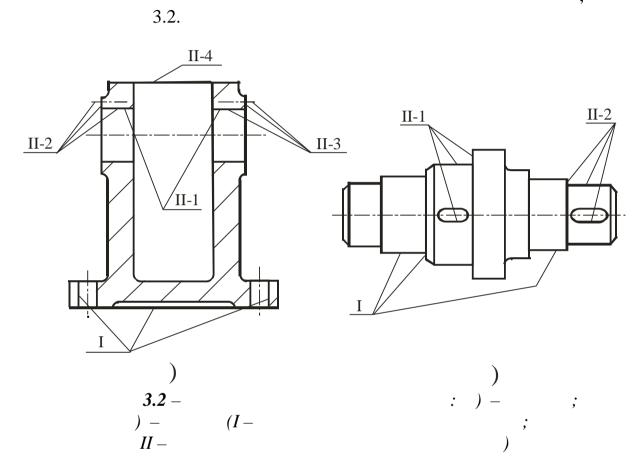
(30)	(830)	(8)		
5	10	100		
5100	10200	100500		
100300	200500	5005000		
3001000	5005000	500050000		
1000	5000	50000		

n , .,

$$n = Nd /$$
 , (57)
 $N -$, .;
 $d -$, .;
 $d = 5$; $d = 10 -$; $0,002$ 3,

- 0,002 3 .

.


3.2.2

1. 2. 3.		(3.1.2).	:	·	,
. 15	(04.38.132–2) . 7	». 0,5	: « . 12 ,	-	.)
1.	:	_	,		
2.		-	,		
3.			. – ,		
4.		-	,		
	; «	».	_		-
	,	() .		,
	,		,		
	,		•		T

3.2.

- 34 -

II

·
,

,

,

«

3.2.3

14.201-83 **».** 1.

, .

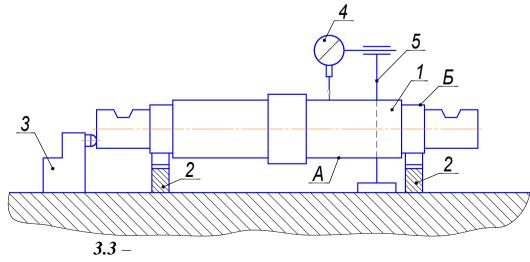
2.

3. ([9, 10, 11]. : « 6636 – 69 [10], 75, 82, 90, 105 75 90 2 [10]. [10], R1; R1,6; R2; : 1 45°; 2 45°; 3 45°. **»**. 4. 5. 6. 7. 8. 9. [9]. , [9], [9], [9, 11], [9], [9, 11], [9, 11].

.

3.2.4

,

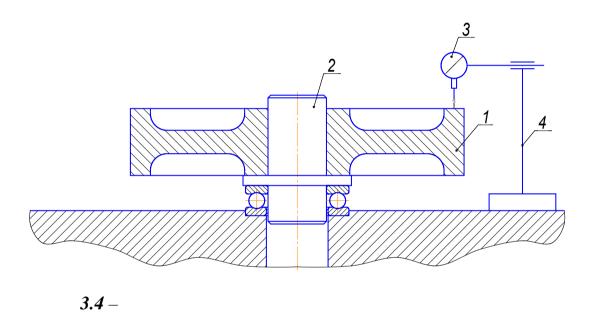

-;

-,

- ()

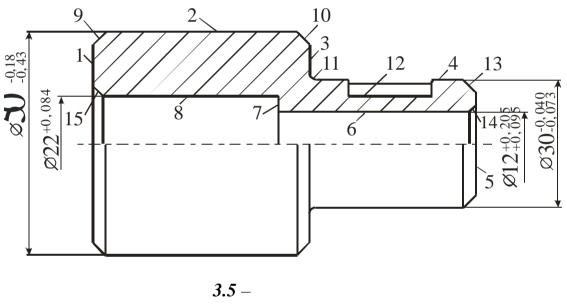
0,04 .

3.3.



- 38 -

2 577-68, 1 4 (5 , 3. 0,01 3,


2. 0,06

3.4. 1 2.

3 (10 , 577-68, 0,01)

3.5.

IT15. 7 8, 2, 3, 4, 6 12.

3.5)

 $\varepsilon_{\ddot{a}} = \grave{O}_{i-1} / \grave{O}_{i} \,,$ (58)

 \grave{O}_{i-1} – \grave{O}_{i} –

3.9.

 $\mathcal{E}_{\ddot{a}}$,

. , $\mathcal{E}_{\ddot{a}}$ 3-4, -

2-2,5.

3.9 –

2	005	4
	010	4 2,5
4	020	1,62
	025	1,58
6	005	3,9 1,64
8	005	3,9 2,14

3.2.6

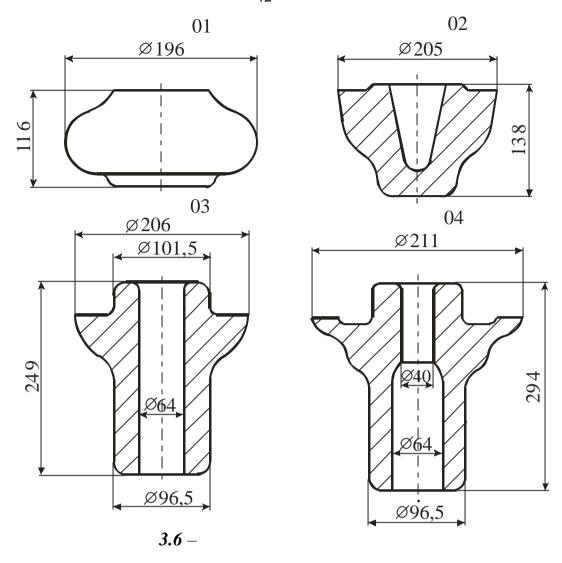
_ . _

,

•

,

.),


- [13].

,

3.10.

3.10 –

005			-11
005			166–80
010	=650°		100 00
015			-50
•••			
040			
	01.	4000	
	02.	6300	
	03.		
	04.		
		620	
045		630	
•••			
070			166–80

 $\hat{E}_{i} = m_{\ddot{a}} / m_{\varsigma},$ (59)

m – *m* -

0,6, < 0,6,

3.2.7

 $n = \frac{\lg \varepsilon_{\ddot{a}}}{\lg \varepsilon_{c\delta}} ,$ (60)

 $\mathcal{E}_{\ddot{a}}$ –

 ${\cal E}_{\tilde{n}\check{\partial}}$ –

 $\mathcal{E}_{\tilde{n}\check{o}}=3,25.$

 $\mathcal{E}_{\ddot{a}}$ $\varepsilon_{\ddot{a}} = \dot{O}_{\varsigma} / \dot{O}_{\ddot{a}} \quad ,$ (61)

 \grave{O}_{arphi} _ _

 $\emptyset 80^{+1,5}$ 3.11, 3.4.

3.11 –

		,	R _a ,
1. –	h15	1500	50
2.	h12	300	12,5
3.	h10	120	3,2
4.	h8	46	2,5
5.	h6	20	1.25

3.2.8

(3.7)

() ,

•

- - .

•

 $Z_{i min}$ ($2Z_{i min} = 2(Rz_{i-1} + \sqrt{\rho_{i-1}^2 + \varepsilon_{y_i}^2});$ (62)) $Z_{i \ min} = (Rz_{i-1} + i_{i-1} + j_{i-1} + y_{i});$ (63) $2Z_{i \ min} = 2(Rz_{i-1} + i_{i-1} + i_{i-1} + y_i),$ (64) Rz_{i-1} –); _{i-1} — *1*. $_{i}=0.$ $2Z_{i min}=2(Rz_{i-1}+_{i-1}+_{i-1}).$ (65)*2*. $2Z_{i \ min} = 2(Rz_{i-1} + i_{-1}).$ (66)*3*. $2Z_{i \min} = 2Rz_{i-1}.$ (67)*4*. i -1

 $Z_{i min} = R Z_{i-1} + {}_{i-1} + {}_{yi};$ $2Z_{i min} = 2(R Z_{i-1} + \sqrt{\rho_{i-1}^2 + \varepsilon_{y_i}^2}).$ (68)

$$Z_{i min} = Rz_{i-1} + i_{i-1};$$
 (70)

- 46 -

$$2Z_{i \min} = 2(Rz_{i-1} + {}_{i-1}). \tag{71}$$

 $\varepsilon_{y} = \sqrt{\varepsilon^{2} + \varepsilon^{2}}$. (72)

=0.

[14, 15, 16, 17]

$$2Z_{i\min} = D_{i-1\min} - D_{i\min} \tag{73}$$

$$2Z_{i\min} = D_{i\max} - D_{i-1\max} \tag{74}$$

 $D_{i-1\min} D_{i-1\max}$

$$D_{i\,\mathrm{max}}$$
 $D_{i\,\mathrm{min}}-$

(73) (74), $D_{i-1\min} = D_{i\min} + 2Z_{i\min} ,$ (75)

$$D_{i-1\max} = D_{i-1\min} + IT_{i-1} \tag{76}$$

$$D_{i-1\max} = D_{i\max} - 2Z_{i\min} , \qquad (77)$$

$$D_{i-1\min} = D_{i-1\max} - IT_{i-1} \tag{78}$$

 IT_{i-1} —

•

$$2Z_{i\max} = D_{i-1\max} - D_{i\max} \tag{79}$$

$$2Z_{i\max} = D_{i\min} - D_{i-1\min} \tag{80}$$

 IT_z

$$IT_z = Z_{i \max} - Z_{i \min} = IT_{i-1} - IT_i;$$
 (81)

$$IT_z = 2Z_{i\max} - 2Z_{i\min} = IT_{i-1} - IT_i,$$
 (82)

 IT_{i-1} ;

 IT_i – .

 Z_{0max} Z_{0min}

7 - 7

$$Z_{0max} = z_{i max}; (83)$$

$$Z_{0min} = \sum_{z_{i} min.}$$
 (84)

$$Z_{0max} - Z_{0min} = IT - I \quad ; \tag{85}$$

$$2Z_{0max} - 2Z_{0min} = IT - I \quad , \tag{86}$$

IT , IT –

[17].

3.12.

3.12

 $Ø80^{+1,5}$

3.7.

3.12 –

	,		,			,		
		$2Z_{min}$	$2Z_{max}$	IT_z ,	D _{min}	D _{max}		
0	1500	_	_	_	76,265	77,265		
1.	300	956	1656	700	75,309	75,609		
2.	120	226	336	110	75,083	75,273		
3.	46	60	176	116	75,023	75,097		
4.	20	20	74	54	75,003	75,023		
: $-1000-20=980$; $2Z_{0 \text{ max}}-2Z_{0 \text{ min}}=2242-1262=980$								

i-

 $t_i = 2Z_{i_{\text{max}}} / 2$ (87)

3.2.9

,

:

. .) (;

· -

, ,

,

•

•

[7, 18, 19].

.).

				3.17	702–79.		
	()			,	
,	,	,	,				,
	, -			,	,	(
		,	,			()
	,	(,	().),
		[5, .765]	,				
		,					
	,	,	٠	,			,
,							•
						•	
		,		,			
	3.13.	3.13		3.5	.		
3	3.13 –				_		•
		-					
005	01 02		2 4 3 5		16 2	20 3	
•••			•••			••	
025	01		- 12			6 11	

; ; ; ; , , , , . .);

; - , , , ,

.).

(. 3.14).

3.14 –

	()	()
1.		
2.		
3.		
4.		
5		

III –

```
(
    . .) –
                                                                                                                  »)
                                                                        («
                                                3.8).
                                 (
                                                                                         21495-76,
[7, 12, 20].
                                        /III
                                              II′
                 3.8 –
                                                                                                              005
I –
1, 2, 3, 4);
II –
                                                                      5);
```

6).

S V, (87), [21]. [5, 22, 23, 24]. [5, 22, 23, 24]

[25, 26].

```
,
),
                                                                                                    [25, 26, 27].
                  «
                                                  ).
                                    N \leq N,
                                                                                                                  (88)
N
N
                                     N
                                               =N \eta,
                                                                                                                  (89)
N -
                                                  \eta = 0.8...0.85.
 \eta –
 3.2.13
                  (
                                                        T_0 –
                                                                      T_0
                                  T_{\scriptscriptstyle 0} = L_{\scriptscriptstyle \partial} i / S_{\scriptscriptstyle M} ,
                                                                                                                (90)
 L_{\eth} –
 i_{-}
S_{M}
```

(90)

[7, 21].

 L_{δ} , , L = L + l + l , () [7, 21]. (91) L - l , $l_{\rm ex}$ -);

 $\grave{O}_{\!\!\hat{i}}$

 $\dot{O}_{\hat{i}} = \sum_{i=1}^{n} \dot{O}_{o_i}, i = 1...n,$

(92)

) $\grave{O}_{\hat{\imath}.\ddot{e}.}, \ldots$ $o = \ldots$ (93)

(94)

 $o = \sum_{i=1}^{n} t_{o...i}$. $O_{\hat{i}}$

3.2.14

 $\grave{O}_{\!\hat{\imath}}$.

```
\grave{O}_{\phi - \hat{e}} = T_{\phi \, \grave{o}} \, + \grave{O}_{i.\varsigma} / n \, ,
                                                                                                                         (95)
                                                                                                                          (96)
= ( + ) -
                                                                                            .
(96)
            [28].
                                                                 [28]
                                                                                                                          (97)
                                                                                                                         [5];
                                     [29].
                                                                                                                         (98)
                                                                                                                   )
                                                                                                                    (98)
[28].
```

(99)

```
(99)
                                                                                                                        [29].
                                                                                          [26],
                                                                                                                                    )
                                           [26, 27].
 3.2.15
                                                                                           C_{\delta}, .,
                                                            /\tau .
                                                                                                                            (100)
                                                  (100)
                                                                                                                    3.2.14
                                       \hat{E}_{\varsigma} = (\tilde{N}_{\eth} \, / \, \tilde{N}_{i\eth}) \cdot 100\% \ ,
                                                                                                                            (101)
	ilde{N}_{\check{o}}, 	ilde{N}_{\check{\imath}\check{o}} _
                                                                                       10%.
                                                                                                                             K_{i}
                                                                                        K
                                             =\sum_{i=1}^{n} _{i}/_{n}
                                                                                                                            (102)
n –
                                                                                                  = 0,8...0,9;
                                                                           = 0,75...0,85;
                                                                                                 = 0,65...0,75.
```

[12].

3.2.16

0,5

; -

; -

--;

--();

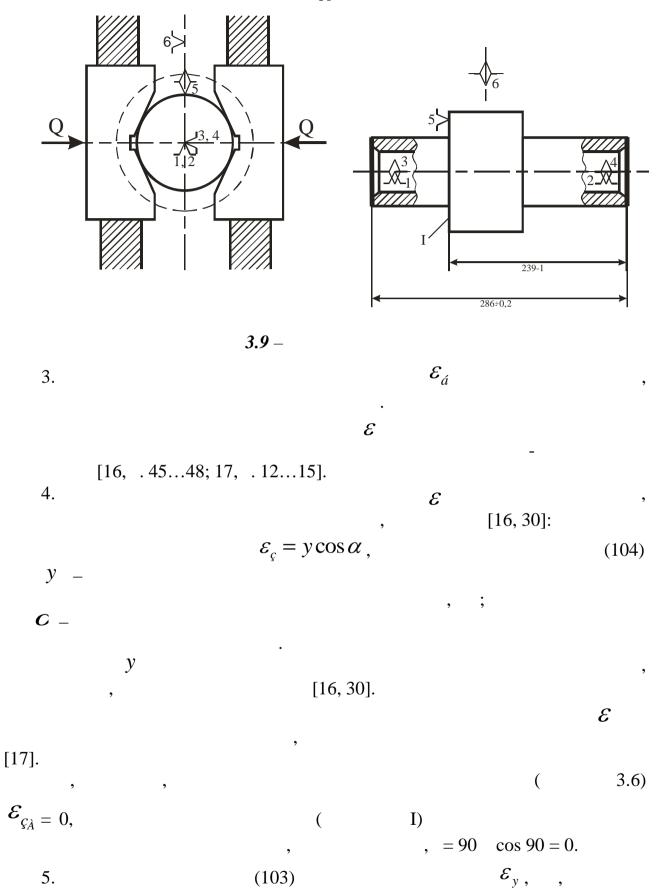
--

3.3

3.3.1

,

•


. : « 20±0,65 ,

•

,

```
1
                                                                       5
                                                      , «...
          3
                                    ...».
     3.3.2
     1.
                                                              .
21495–76),
                                                     (
                                  Q,
                                                                               )
                              [12, 30, 31, 32].
     2.
                     Q.
                                                                       [30, 31, 32, 33, 34,
35].
     3.
                                                              f.
                        [5, 31].
     4.
                                                                    [5, 31, 32].
     5.
               (
                                       )
                                                   [5, 22]
                  [36].
     6.
                                                                 Q.
                                       Q
```

[30, 31, 32, 33, 34, 35]. 7. [31]. 8. (. .). [5, 31]. [5, 7]. [12, 30, 31]. 3.3.3 1. Q, (21495-76), 3.9. \mathcal{E}_{δ} : 2. $\varepsilon_{\delta} = \sqrt{\varepsilon_{\delta}^2 + \varepsilon_{\varsigma}^2} \,,$ (103) $\mathcal{E}_{\acute{a}}$ - $\mathcal{E}_{\it c}$ -

(103)

,

- 62 -4.1 151001.04.300 151001.04.000 (151001) ((04)(300) (3) 100 900. **- 000.** 305, 507, 608, 151001.04.305 01 99 –) 4.2 4.2.1 4 12570-2006 [50].

4.2.2 4. 4.2.3 **>> «**). 4.2.4), 4.2.5 80%

- 64 -4.2.6 4.2.7 7.1. [12]. 4.2.8 . .). (**« « - « « « »**.

4. 3

(

)

2.301.

```
2.105-95.
                                          (
                                                                1,5
                                                       4 (210 x 297 ).
                   2.104.
(
                                                           2,
                              2.104.
                 2
                                          2
                                    ».
                                         .».
                                                                                  2
         «
                                              «
      3
                  10
                                                    15...17
                                                         ,
«2.1» (
                ).
```

```
«2.1.3» (
                           «2.1.3.5» (
                            ).
         15-17
                                             8-10
           ).
                                                     «Times New
Roman» 14.
                                                       « »
                          «
                                                       > -1,5  ;
                       » — 0
                                     > -1,0 
                                                       - 0,5-0,7 
                       4);
         «
                                    »,
                                    » – 0,5
        » – 0,5
       1,7 ; «
                                     >>
                                       ».
```

 ρ , / 3 , $\rho = mV$, (1) m - V -. (15) ...». (3.1). . .), **«** »,

```
).
                                                          1 –
                                  ).
                                                                           4...».
                            ,
4.1.
                                                    12»
                                         «
                                 4.1 –
                                                 3.4» (
                                     «
        ).
          12 –
«
```

« 8.417-81. 50...60 4.4 4.4.1 2.104. 2.109. 2.303; 2.301; 2.302; 2.304. 2.305. 2.306, 2.307, 25347. 25346, 2.308. () 2.309.

```
2.310.
                                                                        2.311.
                                                                                        2. 312;
                                      2.313.
4.4.2
4.4.3
                                                             2789–73.
                           R_{a}
                                        R<sub>z</sub>.
                                                                                 R_{a}
4.4.4
                                          ),
                                                                                            ).
                 ).
```

(

· · ·

4.5

•

. [37, 38].

·

```
- 72 -
```

3.1118 - 82,1) (1, 1). 2) 3.1404 - 86,3, 2). 3.1404 - 86,8, 8). 3.1404 - 86,10, 10). (14). 3.1404 - 86, 14, 3.1105 - 84,7, 3) 7)-(4) 3.1502, 2)-6-8 3.1107-81 «

• ,

```
, 1973.
                          -4 .
 1.
240 .
   2.
                                                     , 1985. 387 .
   3.
                                                           . .:
               , 1977. 288 .
                                                           3 . 1.
   4.
                                                            , 1999.
8-
912 .
  5.
                                                      , 1985. 496
              . .2, 4-
   6.
                                                      , 1978. 416 .
   7.
                         , 1988. 736 .
   . .:
   8.
   , 1982. 208 .
                          , 1985. 368 .
    10.
                                                            . .1, 5-
                                 , 1980. 728 .
    11.
                                          .: , 1983. 256 .
    12.
                                              , 1989. 288 .
    13.
             , 2004. 30 .
    14.
           ., 2007. 272 .
                             , 2006. 256 .
    16.
              . .1, 4-
                                                           , 1985. 656
    17.
                            .: , 1982. 90 .
                                                  ) /
    18.
                                             , 1986. 480 .
                 . .:
```

19.		/		,	,	
1990. 416 .	.;		•	.:		,
20.			•	.:		,
	- , 1985. 496 .					
21.				•	.:	,
1982. 360 . 22.		•	/			
3,	:	•	1972. 408			•
23.		7				
					1	. 2-
., .:	, 1974.					
24.					2	2
., .:	, 1974.			•	2	. 3-
25.	, 17/1.					
	,	. 5-	••,			.:
	, 1990. 445 .					
26.				,		
					1.	
, 1985.	31 .			•	1.	•
27.				,		
1006	,			•	2.	:
, 1986. 28.	32.					
26.			_			
						.:
	, 1974. 136 .					
29.						
				,		
	, 1974. 136 .			. 3-	••	••
30.	, 1771: 130				. 2-	••
	:	, 1983. 277	7.			ŕ
31.	,					
	:		•	.:	, 1984	4. 36
32.		/				
	2:	. 199	9. 640 .		•	
33.	• ••	,				
•		:	, 1969	. 392 .		
34.	· ·			1979 30	03	:
	/ -	•		19/9 1		

	35.		:		2 .	.1/		
		,	.:	,	1984. 592			
	36.	• ••		• •				
		1001 10			:			•
	.: 37.	, 1991. 19 .						
	31.		:	, 1994. 42				•
	38.	• ••	•	,	•			
			•		•		:	, 1998.
20								

- 76 -

()

	«	 *	
«			
	<u>« »</u>	 20 .)
			<u> </u>
	,		

()

	«					»
				12		
	«		» –21	5		
:		(04	.38.132–2)			
	_	- 23000	.50.152 2)			
1.		,	()	
_						
2. _ _						
_ _ _						
3.						
_ _ _			1-2			
4.						
		1.10	15.10	15.11	1.12	15.12
	. %	15	30	60	90	100

	1.10	15.10	15.11	1.12	15.12
, %	15	30	60	90	100
, %	20	30	65	85	100

() «___»_____20 .

. .

3.1105) 2 ((. .,) (. .,) **«** _____20___. « »

29.09.11. 60 84/16. . . . 4,88. 50 . 11-428. . 116.

658207, , . , 2/6.